# Quickstart This guide provides a minimal, complete example of how to use `citk` for a conditional independence test within the `causal-learn` framework. ## Example: Running PC with a CITK Test The following example demonstrates how to: 1. Generate synthetic data. 2. Run the PC algorithm. 3. Use a conditional independence test from `citk`. ```python import numpy as np from causallearn.search.ConstraintBased.PC import pc import citk.tests # 1. Generate some data # Here, X2 is a function of X0 and X1, creating a dependency. np.random.seed(42) data = np.random.randn(200, 3) data[:, 2] = 0.5 * data[:, 0] + 0.5 * data[:, 1] + 0.1 * np.random.randn(200) # 2. Run the PC algorithm using a citk test # You can swap 'spearman' with any other available test, like # "fisherz", "gsq", "rf", "dml", etc. cg = pc(data, alpha=0.05, indep_test='spearman') # 3. View the learned graph edges # The output should reflect the dependencies in the data. print("Learned Graph Edges:") print(cg.G.get_edges()) ```